
www.manaraa.com

The Performance of Consistent CheckpointingElmootazbellah Nabil ElnozahyDavid B. Johnson�Willy ZwaenepoelDepartment of Computer ScienceRice UniversityHouston, Texas 77251-1892mootaz@cs.rice.edu, dbj@cs.cmu.edu, willy@cs.rice.eduAbstractConsistent checkpointing provides transparent fault tol-erance for long-running distributed applications. In thispaper we describe performance measurements of an im-plementation of consistent checkpointing. Our measure-ments show that consistent checkpointing performs re-markably well. We executed eight compute-intensive dis-tributed applications on a network of 16 diskless Sun-3/60workstations, comparing the performance without check-pointing to the performance with consistent checkpointstaken at 2-minute intervals. For six of the eight applica-tions, the running time increased by less than 1% as a re-sult of the checkpointing. The highest overhead measuredfor any of the applications was 5.8%. Incremental check-pointing and copy-on-write checkpointing were the moste�ective techniques in lowering the running time over-head. These techniques reduce the amount of data writtento stable storage and allow the checkpoint to proceed con-currently with the execution of the processes. The over-head of synchronizing the individual process checkpointsto form a consistent global checkpoint was much smaller.We argue that these measurements show that consistentcheckpointing is an e�cient way to provide fault tolerancefor long-running distributed applications.1 IntroductionThe parallel processing capacity of a network of work-stations is seldom exploited in practice. This is due inpart to the di�culty of building application programs thatcan tolerate the failures that are common in such environ-ments. Consistent checkpointing is an attractive approachThis work was supported in part by the National ScienceFoundation under Grants CDA-8619893 and CCR-9116343,by the Texas Advanced Technology Program under GrantNo. 003604014, and by an IBM Graduate Fellowship.�Author's current address: School of Computer Science,Carnegie Mellon University, Pittsburgh, PA 15213-3890.

for transparently adding fault tolerance to distributed ap-plications without requiring additional programmer ef-fort [26, 30]. With consistent checkpointing, the stateof each process is saved separately on stable storage asa process checkpoint, and the checkpointing of individ-ual processes is synchronized such that the collection ofcheckpoints represents a consistent state of the whole sys-tem [6]. After a failure, failed processes are restarted onany available machine and their address space is restoredfrom their latest checkpoint on stable storage. Survivingprocesses may have to rollback to their latest checkpointon stable storage in order to remain consistent with re-covering processes [15].Much of the previous work in consistent checkpoint-ing has focused on minimizing the number of processesthat must participate in taking a consistent checkpoint orin rolling back [1, 11, 15, 17]. Another issue that has re-ceived considerable attention is how to reduce the numberof messages required to synchronize the consistent check-point [2, 5, 8, 16, 19, 24, 28, 29]. In this paper, we focus in-stead on the overhead of consistent checkpointing on thefailure-free running time of distributed application pro-grams. We report measurements of an implementationof consistent checkpointing and analyze the various com-ponents of the overhead resulting from consistent check-pointing.The overhead of checkpointing during failure-free com-putation includes (1) the cost of saving the checkpointson stable storage, (2) the cost of interference between thecheckpointing and the execution of processes, and (3) thecost of the communication between processes required toensure that the individual process checkpoints record aconsistent system state. Stable storage for checkpoints isprovided by a highly available network �le server. Thecheckpoints cannot be saved on a local disk or in localnonvolatile memory since that would make them inacces-sible during an extended outage of the local machine. Thecost of saving the checkpoints to stable storage thereforeincludes both the cost of network transmission to the �leserver and the cost of accessing the stable storage deviceon the �le server.



www.manaraa.com

Our implementation of consistent checkpointing runson sixteen diskless Sun-3/60 workstations connected bya 10 megabit per second Ethernet. Our measurementsshow that consistent checkpointing can be implementedvery e�ciently, adding very little overhead to the failure-free execution time of distributed application programs.With a 2-minute checkpointing interval, the running timeincreased by less than 1% for six of the eight distributedapplication programs that we studied. The highest over-head measured was 5.8%. The most important factorsa�ecting the performance were the interference between aprocess's checkpointing and its concurrent execution, andthe amount of data saved with each checkpoint on stablestorage. The synchronization of the individual processcheckpoints to form a consistent global checkpoint addedlittle overhead.Section 2 of this paper describes our implementationof consistent checkpointing. In Section 3, we brie
y de-scribe the eight application programs used in our study.We report and analyze our performance measurements ofthis implementation in Section 4. In Section 5, we com-pare our research with related work, and in Section 6, wepresent our conclusions.2 ImplementationThe system is assumed to consist of a collection of fail-stop [23] processes. A process consists of a single addressspace, residing on a single machine, and all threads exe-cuting in that address space. On each machine, a check-point server controls the checkpointing of the local pro-cesses, and participates in the consistent checkpointingprotocol.2.1 Checkpointing a Single ProcessThe checkpoint of a single process includes a copy of theprocess's address space and the state maintained by thekernel and the system servers for that process. Insteadof writing the entire address space to stable storage dur-ing each checkpoint, we use incremental checkpointing toreduce the amount of data that must be written. Onlythe pages of the address space that have been modi�edsince the previous checkpoint are written to stable stor-age. This set of pages is determined using the dirty bitmaintained by the memory management hardware in eachpage table entry.Furthermore, we allow the application to continue exe-cuting while its checkpoint is being written to stable stor-age. However, if the application process modi�es any ofits pages during the checkpoint, the resulting checkpointmay not represent the state that the process had at anysingle point in time. We have considered two alternativesolutions to this problem.The �rst solution uses copy-on-write memory protec-tion, supported by the memory management hardware [9].At the start of an incremental checkpoint, the pages to bewritten to stable storage are write-protected. After writ-

ing each page to stable storage, the checkpoint server re-moves the protection from the page. If a process attemptsto modify one of these pages while it is still protected, amemory protection fault is generated. The kernel copiesthe page into a newly allocated page of memory, removesthe protection on the original page, and allows the pro-cess to continue. The newly allocated page is not acces-sible to the process. It is used only by the checkpointserver to write the original contents of the page to sta-ble storage and is then deallocated. If insu�cient mem-ory is available to allocate a new page for handling thecopy-on-write fault, the process is blocked until memorycan be allocated. This scheme is similar to that used byLi et al. [18] in their concurrent checkpointing techniquefor small physical memories. Unlike our implementation,however, they did not implement incremental checkpoint-ing.The second solution that we considered uses pre-copying [12, 27]. If the number of pages to be writtento stable storage is below some threshold, the pages arecopied at once to a separate area in memory and are thenwritten from there to stable storage without interrupt-ing the process's execution. Otherwise, a \pre-copying"pass is made over the process's address space, writing themodi�ed pages from the process's address space to stablestorage. The process continues to execute and can freelymodify any of these or other pages during the pre-copyingpass. Once these pages have been written to stable stor-age, the number of modi�ed pages in the address spaceis reexamined. If it is still above the threshold, addi-tional pre-copying passes are performed, up to a de�nedmaximum number of passes. If the maximum number ofpasses has been exceeded, the process is suspended whilethe remaining modi�ed pages are written directly from itsaddress space to stable storage.The pre-copying method avoids the expense and com-plication of handling copy-on-write faults, but may needto write some pages to stable storage more than once, ifthey are modi�ed again during a pre-copying pass. In ad-dition, pre-copying may need to suspend the process inorder to complete the checkpoint, if additional pages ofthe address space are being modi�ed too quickly by theprocess during pre-copying passes.We have implemented checkpointing using each of thesetwo methods and compared their performance. Our mea-surements show that the overhead introduced by copy-on-write checkpointing is always less than or equal to that in-troduced by pre-copying checkpointing. For example, forone application, the time required to write a checkpointwith pre-copying was 40% higher than with copy-on-write.Therefore, we chose copy-on-write for our implementationof consistent checkpointing. All measurements reportedin the remainder of this paper were performed with thecopy-on-write implementation.2.2 Consistent CheckpointingOne distinguished checkpoint server acts as a coordinatorand sends messages to the other servers to synchronize the



www.manaraa.com

consistent checkpoint. Each process maintains one perma-nent checkpoint, belonging to the most recent consistentcheckpoint. During each run of the protocol, each processtakes a tentative checkpoint, which replaces the perma-nent one only if the protocol terminates successfully [15].Each consistent checkpoint is identi�ed by a monotoni-cally increasing Consistent Checkpoint Number (CCN).Every application message is tagged with the CCN of itssender, enabling the protocol to run in the presence ofmessage re-ordering or loss [5, 16]. We use this check-pointing protocol both for its simplicity and because wehave found that it performs well in our environment.The protocol proceeds as follows:1. The coordinator starts a new consistent checkpointby incrementing CCN and sending marker mes-sages [6] that contain CCN to each process in thesystem.2. Upon receiving a marker message, a process takesa tentative checkpoint by saving the process's kerneland server state and writing the modi�ed pages ofthe address space to the checkpoint �le, as explainedin Section 2.1. The tentative checkpoint is writtenconcurrently with the process's execution.A process also starts a tentative checkpoint if it re-ceives an application message whose appended CCNis greater than the local CCN. Since this message wastransmitted after its sender had started participatingin the consistent checkpoint, the receiver must check-point its state before receiving this message in orderto maintain the consistency of the global checkpoint.3. After the tentative checkpoint has been completelywritten to stable storage, the process sends a successmessage to the coordinator.4. The coordinator collects the responses from all pro-cesses, and if all tentative checkpoints have been suc-cessful, it sends a commit message [10] to each pro-cess; otherwise, it sends an abort message. When aprocess receives a commit message from the coordina-tor, it makes the tentative checkpoint permanent anddiscards the previous permanent checkpoint. Whena process receives an abort message, it discards itstentative checkpoint.2.3 Stable StorageEach process checkpoint is stored as a �le on a sharednetwork �le server. The �le server structures the disk asa sequential log in order to optimize write operations [21].Files that store di�erent checkpoints of the same processphysically share data blocks, in order to e�ciently storethe incremental changes to the checkpoint �le. Whena process records a tentative checkpoint, it writes thepages of its address space that have been modi�ed sinceits last checkpoint to a new �le. The remaining datablocks, which represent the portions of the address space

not modi�ed since the previous checkpoint, are automat-ically shared with the older checkpoint �les of that pro-cess. Each �le logically contains a complete image of theprocess's address space. When a checkpoint �le is deleted,only the data blocks that are not shared with other check-point �les are discarded.In order to protect against a failure of the primaryserver, the checkpoint �les are also saved on a backup�le server. During the period of low load between twoconsecutive consistent checkpoints, the primary �le serverupdates the backup's state.3 The Application ProgramsWe chose the following eight long-running, compute-intensive applications, representing a wide range of mem-ory usage and communication patterns:� fft computes the Fast Fourier Transform of16384 data points. The problem is distributed byassigning each process an equal range of data pointson which to compute the transform.� gauss performs Gaussian elimination with partialpivoting on a 1024 � 1024 matrix. The problem isdistributed by assigning each process a subset of thematrix columns on which to operate. At each iter-ation of the reduction, the process which holds thepivot element sends the pivot column to all otherprocesses.� grid performs an iterative computation on a gridof 2048 � 2048 points. In each iteration, the valueof each point is computed as a function of its valuein the last iteration and the values of its neighbors.This application occurs in the kernel of many 
uid-
ow modeling algorithms. The problem is distributedby assigning each process a section of the matrix onwhich to compute. After each iteration, each processexchanges the new values on the edges of its sectionwith the corresponding neighbor processes.� matmultmultiplies two square matrices of size 1024�1024. The problem is distributed by assigning eachprocess a portion of the result matrix to compute.No communication is required other than reportingthe �nal solution.� nqueens counts the number of solutions to then-queens problem for 16 queens. The problem is dis-tributed by assigning each process an equal portionof the possible positions of the �rst two queens. Nocommunication is required other than reporting thetotal number of solutions found at completion.� prime performs a probabilistic test of primality fora 64-digit integer, using the Pollard-Rho method. Amaster process distributes work from a task queue toeach slave process. Each slave process communicatesonly with the master, and the master announces the



www.manaraa.com

number's factors that have been discovered at com-pletion.� sparse solves a sparse system of linear equations in48000 unknowns, using a variation on the iterativeGauss-Seidel method. The system is sparse in thatless than 0.25% of each row in the matrix is nonzero.The problem is distributed by assigning each processan equal subset of the unknown variables. After eachiteration, each process sends the new values of itsassigned unknown variables to all other processes.� tsp solves the traveling salesman problem for a densemap of 18 cities, using a branch and bound algorithm.A main process maintains the current best solutionand a task queue containing subsets of the searchspace. The main process assigns tasks from the queueto the slave processes. When a slave process �ndsa new minimum, it reports the path and its lengthto the main process. The main process updates thecurrent best global solution, if necessary, and returnsits length to the slave process.4 Performance4.1 OverviewOur implementation of consistent checkpointing runs onan Ethernet network of 16 diskless Sun-3/60 worksta-tions. Each workstation is equipped with a 20-MHz Mo-torola MC68020 processor and 4 megabytes of memory,of which 740 kilobytes are consumed by the operatingsystem. These machines run a version of the V-Systemdistributed operating system [7] to which we have addedour checkpointing mechanisms. Our experimental envi-ronment also includes two shared Sun-3/140 network �leservers, each using a 16-MHz MC68020 processor and aFujitsu Eagle disk, on which the checkpoints are written.The checkpoint data of a single process can be writtento the �le server over the network at a rate of about 550kilobytes per second. All measurement results presentedin this paper are averages over a number of trials. Stan-dard deviations for all measurements were under 1% ofthe average.All measurements of the eight application programswere made with the execution distributed across 16 ma-chines, with one process per machine. The running timesrange from about 48 minutes for gauss to about 3 hoursfor fft, and the total amount of memory used acrossthe 16 machines ranges from 656 kilobytes for nqueens to47 megabytes for sparse. Table 1 summarizes the runningtime and the memory requirements of each application.4.2 Checkpointing Overhead4.2.1 MeasurementsTable 2 presents a comparison between the running timesof the application programs when run without checkpoint-ing and when run with consistent checkpointing with a 2-

Running Per Process MemoryProgram Time (Kbytes)Name (minutes) Code Data Totalfft 186 21 555 576gauss 48 20 576 596grid 59 21 2163 2184matmult 137 20 2348 2368nqueens 77 18 22 40prime 53 38 74 112sparse 65 22 2954 2976tsp 73 21 27 48Table 1 Application running time andmemory requirements.minute checkpointing interval. We believe this choice ofcheckpoint interval is conservative. In practice, we expectlonger checkpoint intervals to be used. In that sense, ourmeasurements overestimate the cost of consistent check-pointing, since longer checkpoint intervals reduce failure-free overhead.Some additional performance statistics are provided inTable 3. The data written column represents the averageamount of data written to stable storage per consistentcheckpoint (summed over all 16 processes). The elapsedtime column shows the time from the initiation of thecheckpoint to the receipt by the coordinator of the lastacknowledgement of its commit message. This time cor-responds roughly to the period during which a processmay incur copy-on-write faults due to checkpointing. Thecopy-on-write faults column gives the average number ofsuch faults that occur per checkpoint in each process. Thecheckpoint's elapsed time is also the time during whicha process may become blocked, waiting for a new pageto become available to service a copy-on-write fault. TheWithout With Di�erenceProgram Checkp. Checkp.Name (sec.) (sec.) (sec.) %fft 11157 11184 27 0.2gauss 2875 2885 10 0.3grid 3552 3618 66 1.8matmult 8203 8219 16 0.2nqueens 4600 4600 0 0.0primes 3181 3193 12 0.4sparse 3893 4119 226 5.8tsp 4362 4362 0 0.0Table 2 Running times with and withoutcheckpointing.



www.manaraa.com

Total Coord. Per ProcessProgram Data Elapsed Copy-on BlockedName Written Time Write Time(Mbytes) (sec.) Faults (sec.)fft 0.4 2.0 4 0.0gauss 7.1 14.1 50 0.0grid 35.0 60.2 122 0.1matmult 0.9 3.3 3 0.0nqueens 0.3 1.5 2 0.0prime 0.7 2.8 4 0.0sparse 13.5 25.7 44 5.5tsp 0.2 0.2 2 0.2Table 3 Additional performance statistics(per checkpoint).blocked time column indicates the average amount of timethat each process was actually blocked during each check-point.4.2.2 AnalysisFor all applications but grid and sparse, the e�ect ofcheckpointing on the application program performance isnegligible. The overhead for grid is somewhat larger be-cause that program modi�es every point in the 2048�2048grid during each iteration. As a result, most of the ad-dress space of each grid process is modi�ed between anytwo consecutive checkpoints, and must be written to sta-ble storage for each checkpoint. The sparse program hasthe most overhead, 226 seconds or 5.8% of the runningtime. Blocking is responsible for 176 of the 226 secondsof overhead: The program takes 32 checkpoints during itsexecution, and the average blocked time per checkpointis 5.5 seconds (see Tables 1 and 3). The sparse programconsumes about 95% of the available memory on eachmachine. The remaining pages of memory are quickly ex-hausted in servicing the copy-on-write faults during eachcheckpoint, causing the execution to block for extendedperiods.The increase in failure-free running time as a result ofcheckpointing is a�ected primarily by the amount of freememory available on each workstation and by the amountof data to be written to stable storage. The amount of freememory available determines the e�ectiveness of copy-on-write in preventing the application program from block-ing during a checkpoint. The amount of data writtenon stable storage determines the elapsed time required tocomplete the checkpoint. The elapsed time in
uences thenumber of copy-on-write faults that may occur and deter-mines the period during which a process may be blocked.4.2.3 SummaryConsistent checkpointing adds little overhead to the run-ning time of the application programs. On average, the

overhead is about 1%, with the worst overhead measuredbeing 5.8%. We argue that this is a modest price to payfor the ability to recover from an arbitrary number of fail-ures.4.3 Copy-on-Write Checkpointing4.3.1 MeasurementsWe use copy-on-write to avoid blocking the processeswhile the checkpoint is written on stable storage. Tomeasure the e�ectiveness of this solution, we modi�edour checkpointing implementation such that a processremained blocked for the duration of its process check-point. We then measured the performance of the eightdistributed application programs using this implementa-tion and compared the performance to our copy-on-writeimplementation. These results are presented in Table 4.4.3.2 AnalysisThe measurements show that blocking the applicationprogram while the checkpoint is being written to stablestorage is expensive. The performance degradation is de-pendent on the amount of checkpoint data to be saved,due to the latency in writing the data to the �le server.For example, applications with large memory sizes to becheckpointed such as grid and sparse show high over-heads (85% and 20%, respectively) when blocking check-pointing is used, but incur only small overheads (1.8%and 5.8%, respectively) with copy-on-write checkpoint-ing. Applications with very small memory sizes such asnqueens and tsp show no measurable overhead at all withcopy-on-write.4.3.3 SummaryUsing copy-on-write eliminates most process blocking dur-ing checkpointing and thus greatly reduces the overheadof consistent checkpointing. For programs using larger% Increase in running timeProgram Blocking Copy-on-writeName Checkpointing Checkpointingfft 0.2 0.2gauss 13.7 0.3grid 85.0 1.8matmult 3.7 0.2nqueens 1.8 0.0prime 2.9 0.4sparse 20.0 5.8tsp 1.8 0.0Table 4 Blocking checkpointing vs.copy-on-write checkpointing: % increase inrunning time.



www.manaraa.com

memory sizes, copy-on-write should become even moreimportant.4.4 Incremental Checkpointing4.4.1 MeasurementsThe goal of using incremental checkpointing is to re-duce the amount data written on stable storage duringeach checkpoint. We compared incremental checkpoint-ing against full checkpointing, where the entire addressspace of each process is written to stable storage duringeach checkpoint. Tables 5, 6 and 7 compare the amountof data written to stable storage, the percentage increasein running time, and the elapsed time for full and incre-mental checkpointing.4.4.2 AnalysisThe applications can be subdivided into three categorieswith respect to incremental checkpointing: applicationswith a large address space that is modi�ed with high local-ity (fft, matmult and sparse), applications with a largeaddress space that is modi�ed almost entirely between anytwo checkpoints (gauss and grid), and applications witha small address space (nqueens, prime, and tsp). For theapplications in the �rst category, incremental checkpoint-ing is very successful. For the applications in the secondcategory, incremental checkpointing is much less e�ective,because most of the address space is modi�ed between anytwo consecutive checkpoints. Finally, the small addressspaces of the applications in the third category make anyreduction in overhead insigni�cant.4.4.3 SummaryIncremental checkpointing reduces the overhead for manyapplications. Since it is easy to implement and nevermakes performance worse, its potential gain justi�es itsinclusion in any checkpointing implementation.Amount of data written (Mbytes)Program Full Incremental %Name Checkpoint Checkpoint Reductionfft 9.4 0.4 96gauss 9.4 7.1 24grid 35.1 35.0 0matmult 37.9 0.9 98nqueens 0.6 0.3 50prime 1.8 0.7 61sparse 47.7 13.5 72tsp 0.8 0.2 75Table 5 Full vs. incremental checkpointing:amount of data written (Mbytes).

% Increase in running timeProgram Full IncrementalName Checkpoint Checkpointfft 0.2 0.2gauss 0.5 0.3grid 2.0 1.8matmult 1.8 0.2nqueens 0.0 0.0prime 0.9 0.4sparse 17.0 5.8tsp 0.0 0.0Table 6 Full vs. incremental checkpointing:percentage increase in running time.Elapsed time (sec.)Program Full Incremental %Name Checkpoint Checkpoint Reductionfft 17.6 2.0 89gauss 17.8 14.1 21grid 60.2 60.2 0matmult 66.1 3.3 95nqueens 2.6 1.5 42prime 4.0 2.8 30sparse 86.9 25.7 70tsp 2.2 0.2 91Table 7 Full vs. incremental checkpointing:elapsed time (sec.).4.5 Checkpoint Synchronization4.5.1 MeasurementsIn order to create a consistent checkpoint, the processesin the system must synchronize their checkpointing suchthat the most recent checkpoint of each process records aconsistent state of the system. In contrast, in optimisticcheckpointing [2], each process takes checkpoints indepen-dently. The system attempts to construct a consistentsystem state from the available process checkpoints. Op-timistic checkpointing avoids the overhead of checkpointsynchronization, but may lead to extensive rollbacks andthe domino e�ect [2, 20, 22]. It also requires garbage col-lection of process checkpoints no longer needed.To measure the e�ect of the synchronization on check-pointing overhead, we modi�ed our implementation to useoptimistic checkpointing. We measured the performanceof the application programs using this modi�ed implemen-tation, such that each process takes the same number ofcheckpoints as in the experiment described in Section 4.2.Table 8 shows the percentage increase in running time for



www.manaraa.com

the application programs using both forms of checkpoint-ing.4.5.2 AnalysisFor all applications, with the exception of sparse, theincreases in running time as a result of either consistentcheckpointing or optimistic checkpointing were within 1%of each other. For sparse, the overhead of optimisticcheckpointing was 3.0% vs. 5.8% for consistent check-pointing. Optimistic checkpointing performed better forsparse because each process was able to write its check-point to the �le server with little interference from otherprocesses. In consistent checkpointing, all processes at-tempted to write their checkpoints at essentially the sametime, increasing the load on the �le server and slowingits response. Optimistic checkpointing performed worseon gauss than consistent checkpointing. This apparentanomaly is due to the global communication-intensivenature of the gauss program. The execution of a pro-cess slows down somewhat while it is being checkpointed,which may cause some delay in transmitting applicationmessages. Each iteration of gauss requires global com-munication among the processes of the application to dis-tribute the next pivot column. As a result, slowing downthe execution of a single process tends to slow the entireapplication program waiting for messages from that pro-cess. With optimistic checkpointing, the checkpoints ofseparate processes are taken at di�erent times, causingadditional slowdown of the entire application. With con-sistent checkpointing, instead, all processes take a check-point at essentially the same time, causing only a singleslowdown of the application.4.5.3 SummaryThe di�erence between the overhead introduced by opti-mistic checkpointing and that introduced by consistentcheckpointing is small. Given the potential for exten-sive rollback and the domino e�ect with optimistic check-% Increase in running timeProgram Optimistic ConsistentName Checkpointing Checkpointingfft 0.2 0.2gauss 1.0 0.3grid 1.6 1.8matmult 0.1 0.2nqueens 0.0 0.0prime 0.2 0.4sparse 3.0 5.8tsp 0.0 0.0Table 8 Optimistic vs. consistentcheckpointing: % increase in running time

pointing, consistent checkpointing appears the method ofchoice for our environment.5 Related WorkPrevious work in checkpointing has concentrated on is-sues such as reducing the number of messages required tosynchronize a checkpoint [2, 5, 8, 16, 19, 24, 28, 29], limit-ing the number of hosts that have to participate in takingthe checkpoint or in rolling back [1, 11, 15, 17], or usingmessage logging to eliminate the need for synchronizingthe checkpoints and to accelerate input-output interac-tions with the outside world [4, 13, 25]. There are veryfew empirical studies of consistent checkpointing and itsperformance.Bhargava et al. [3] reported on the performance ofcheckpointing. They concluded that, in their environ-ment, the messages used for synchronizing a checkpointwere an important source of overhead. Their conclusionis di�erent from ours, because of the small size of the pro-grams used in their study (4 to 48 kilobytes). For suchsmall sizes, the overhead of writing data to stable storageis indeed negligible, making the communication overheadan important factor. For larger applications, the overheadof writing data to stable storage dominates.Kaashoek et al. [14] implemented consistent checkpoint-ing to add fault tolerance to Orca, a distributed sharedobject-oriented language. Their implementation takesadvantage of the ordered broadcasts already present inthe Orca runtime system to order marker messages withrespect to application messages. Processes are blockedwhile their checkpoint is being written to stable storage.A limited form of incremental checkpointing is used: theapplication code is written to the checkpoint only once,but all data is written out on each checkpoint, whethermodi�ed or not. As can be seen from Section 4.3, forapplications with a large amount of memory to be check-pointed, the cost of blocking checkpointing can be quitehigh. Furthermore, the results in Section 4.4 indicate thatthe amount of data written to stable storage can be re-duced signi�cantly by writing only modi�ed pages to thecheckpoint.Li et al. [18] described several checkpointing methodsfor programs executing on shared memory multiproces-sors. Their results showed that nonblocking copy-on-writecheckpointing reduces the overhead for checkpointing pro-grams running on shared memory multiprocessors. Theydid not implement incremental checkpointing, which wefound to be an important optimization. They also didnot address the problem of consistent checkpointing indistributed systems. We have shown that the cost of syn-chronizing process checkpoints to form a consistent sys-tem state is quite small.6 ConclusionsWe have presented performance measurements taken onan implementation of consistent checkpointing on an Eth-



www.manaraa.com

ernet network of 16 Sun 3/60 workstations. The resultsdemonstrate that consistent checkpointing is an e�cientapproach for providing fault-tolerance for long-runningdistributed applications. With a checkpoint interval asshort as 2 minutes, consistent checkpointing on averageincreased the running time of the applications by about1%. The worst overhead measured was 5.8%. Detailedanalysis of the measurements further demonstrates thebene�ts of nonblocking copy-on-write checkpointing andincremental checkpointing. Using copy-on-write allowsthe process to continue execution in parallel with tak-ing the checkpoint. It avoids a high penalty for check-pointing for processes with large checkpoints, a penaltythat reached as high as 85% for one of our applications.Using incremental checkpointing reduces the load on thestable storage server and the impact of the checkpointingon the execution of the program. Without incrementalcheckpointing, the worst overhead measured for any ap-plication increased from 5.8% to 17%. Synchronizing thecheckpoints to form a consistent checkpoint increased therunning time of the applications studied by very little, 3%at most, compared to optimistic checkpointing. In return,consistent checkpointing limits rollback to the last consis-tent checkpoint, avoids the domino e�ect, and does notrequire garbage collection of obsolete checkpoints.AcknowledgementsWe would like to thank John Carter, Alan Cox, Pete Kele-her, and Kai Li for their comments on earlier drafts of thispaper. We also wish to thank the referees for their sug-gestions.References[1] M. Ahamad and L. Lin. Using checkpoints to local-ize the e�ects of faults in distributed systems. InProceedings of the 8th Symposium on Reliable Dis-tributed Systems, pages 1{11, October 1989.[2] B. Bhargava and S-R. Lian. Independent checkpoint-ing and concurrent rollback recovery for distributedsystems | an optimistic approach. In Proceedings ofthe 7th Symposium on Reliable Distributed Systems,pages 3{12, October 1988.[3] B. Bhargava, S-R. Lian, and P-J. Leu. Experimentalevaluation of concurrent checkpointing and rollback-recovery algorithms. In Proceedings of the Interna-tional Conference on Data Engineering, pages 182{189, March 1990.[4] A. Borg, W. Blau, W. Graetsch, F. Herrmann,and W. Oberle. Fault tolerance under UNIX.ACM Transactions on Computer Systems, 7(1):1{24,February 1989.

[5] D. Briatico, A. Ciu�oletti, and L. Simoncini. A dis-tributed domino-e�ect free recovery algorithm. InProceedings of the 4th Symposium on Reliable Dis-tributed Systems, pages 207{215, October 1984.[6] K.M. Chandy and L. Lamport. Distributed snap-shots: Determining global states of distributed sys-tems. ACM Transactions on Computer Systems,3(1):63{75, February 1985.[7] D.R. Cheriton. The V distributed system. Commu-nications of the ACM, 31(3):314{333, March 1988.[8] F. Cristian and F. Jahanian. A timestamp-basedcheckpointing protocol for long-lived distributedcomputations. In Proceedings of the 10th Sympo-sium on Reliable Distributed Systems, pages 12{20,Bologna, Italy, September 1991.[9] R. Fitzgerald and R.F. Rashid. The integration ofvirtual memory management and interprocess com-munication in accent. ACM Transactions on Com-puter Systems, 4(2):147{177, May 1986.[10] J.N. Gray. Notes on database operating systems.In R. Bayer, R.M. Graham, and G. Seegmuller,editors, Operating Systems: An Advanced Course,volume 60 of Lecture Notes in Computer Science.Springer-Verlag, 1978.[11] S. Israel and D. Morris. A non-intrusive checkpoint-ing protocol. In The Phoenix Conference on Com-munications and Computers, pages 413{421, 1989.[12] D.B. Johnson. Distributed System Fault ToleranceUsing Message Logging and Checkpointing. PhD the-sis, Rice University, December 1989.[13] D.B. Johnson and W. Zwaenepoel. Recovery indistributed systems using optimistic message log-ging and checkpointing. Journal of Algorithms,11(3):462{491, September 1990.[14] M.F. Kaashoek, R. Michiels, H.E. Bal, and A.S.Tanenbaum. Transparent fault-tolerance in parallelorca programs. In Symposium on Experiences withDistributed and Multiprocessor Systems III, pages297{312, March 1992.[15] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE Transactionson Software Engineering, SE-13(1):23{31, January1987.[16] T.H. Lai and T.H. Yang. On distributed snap-shots. Information Processing Letters, 25:153{158,May 1987.[17] P. Leu and B. Bhargava. Concurrent robust check-pointing and recovery in distributed systems. In Pro-ceedings of the International Conference on Data En-gineering, February 1988.



www.manaraa.com

[18] K. Li, J.F. Naughton, and J.S. Plank. Real-time,concurrent checkpoint for parallel programs. In Pro-ceedings of the 1990 Conference on the Principlesand Practice of Parallel Programming, pages 79{88,March 1990.[19] K. Li, J.F. Naughton, and J.S. Plank. Checkpoint-ing multicomputer applications. In Proceedings ofthe 10th Symposium on Reliable Distributed Systems,pages 1{10, October 1991.[20] B. Randell. System structure for software fault toler-ance. IEEE Transactions on Software Engineering,SE-1(2):220{232, June 1975.[21] M. Rosenblum and J.K. Ousterhout. The design andimplementation of a log-structured �le system. InProceedings of the 13th ACM Symposium on Operat-ing Systems Principles, pages 1{15, October 1991.[22] D.L. Russell. State restoration in systems of commu-nicating processes. IEEE Transactions on SoftwareEngineering, SE-6(2):183{194, March 1980.[23] R.D. Schlichting and F.B. Schneider. Fail-stop pro-cessors: An approach to designing fault-tolerantcomputing systems. ACM Transactions on Com-puter Systems, 1(3):222{238, August 1983.[24] M. Spezialetti and P. Kearns. E�cient distributedsnapshots. In Proceedings of the 6th InternationalConference on Distributed Computing Systems, pages382{388, May 1986.[25] R.E. Strom and S.A. Yemini. Optimistic recoveryin distributed systems. ACM Transactions on Com-puter Systems, 3(3):204{226, August 1985.[26] Y. Tamir and C.H. S�equin. Error recovery in mul-ticomputers using global checkpoints. In 1984 In-ternational Conference on Parallel Processing, pages32{41, August 1984.[27] M. Theimer, K. Lantz, and D.R. Cheriton. Preempt-able remote execution facilities in the V-system. InProceedings of the 10th ACM Symposium on Operat-ing Systems Principles, pages 2{12, December 1985.[28] Z. Tong, R.Y. Kain, and W.T. Tsai. A lower over-head checkpointing and rollback recovery scheme fordistributed systems. In Proceedings of the 8th Sym-posium on Reliable Distributed Systems, pages 12{20,October 1989.[29] K. Venkatesh, T. Radhakrishnan, and H.F. Li. Op-timal checkpointing and local recording for domino-free rollback recovery. Information Processing Let-ters, 25:295{303, July 1987.[30] K.-L. Wu and W.K. Fuchs. Recoverable distributedshared memory. IEEE Transactions on Computers,39(4):460{469, April 1990.


